您的位置:主页 > 新闻资讯 >

辽河流域石佛地下水处理的系统优化运行管理探

09-23

  摘要:沈阳市自来水公司六水厂采用接触氧化膜法,去除辽河地下水中的高铁高锰,进行系统化管理,自86年建厂以来,运行稳定,结果表明水质良好。

  水处理系统优化运行的目的在于:通过提高水厂的技术管理水平,合理使用水厂现有处理设施,提高供水水质,降低供水成本,使系统在不断变化的运行状况中,经常处于良好的运行状态。

  水厂的工艺技术以及原水水质、处理效率、投资与经营费用等因素,而选择了不同净水工艺及处理设备。

  由于不同流程、不同净水工艺、不同处理构筑物型式的处理能力、处理效率及运行费用不同,而且各种构筑物的运行参数又都互相联系、互相制约,因此就存在着整个处理系统在一定的运行条件下,各流程在处理能力上的相互协调、各处理构筑物在处理效率上的相互协调,从而达到整个系统的处理费用最小、能源消耗最低,即系统处于经济运行状态。

  管井——跌水曝气——除铁滤池——中间泵房——除锰滤池——清水泵房——市区管网

  我厂建于80年代中期,是亚洲第一座高铁高锰地下水处理厂,属典型辽河流域高铁高锰地下水,采用天然锰砂接触氧化法去除水中的高铁高锰。铁的常见化合价有十2价和十3价,地下水的氧化还原电位比较低,PH值在6.0~7.5之间,这种情况下铁一般是以Fe2+的形式存在地下水中。铁的氧化还原电位比氧低,易于被空气中的氧所氧化,pH值对Fe2+的氧化速率有较大影响,在 pH>5.5的情况下,地下水的pH值每升高1.0,二价铁的氧化速度就增大100倍。

  其基本原理是曝气充氧后将二价铁氧化为三价铁,经反应沉淀之后,过滤将其去除。前已述及,提高地下水的pH值能够大大加快Fe2+氧化为Fe3+的速度。因此,空气自然氧化工艺通常采用较大曝气强度,在充氧的同时散除地下水中的游离CO2以提高pH值,散出水中的HS,曝气后的pH值一般在7.0以上。尽管如此,空气自然氧化除铁工艺所需的停留时间仍较长,约2-3h,且由于三价铁絮凝体较小。容易穿透滤层,影响水质,造成二价铁与锰砂无法吸附,出现滤后水浑浊的现象。另一方面,水中溶解性硅酸与三价铁氢氧化物形成硅铁络合物:

  使Fe(OH)3胶体凝聚困难,影响氢氧化铁的絮凝,难以从水中分离。在地下水碱度较低时,溶解性硅酸对除铁效果影响尤为显著。

  接触氧化除铁,地下水经过简单曝气要絮凝、沉淀而直接进入滤池,在滤料表面催化剂的作用下,亚铁迅速地氧化为三价铁,并被滤层截留而去除。由于催化剂的作用,只要处理水的pH值高于6.0,Fe2+就能顺利的氧化为Fe3+。我厂地下水pH值都是高于6.6的,Fe2+的氧化均能迅速完成,这样就可以简化曝气过程。曝气只需要向水中充氧即可。接触氧化除铁工艺的构筑物较为简单,水力停留时间只需5~15min。同时,铁的去除不受溶解性硅酸价的影响。出水总铁浓度也随着过滤时间的增加而减少。在周期时间内,水质会越来越好。

  接触氧化除铁的机理是催化氧化反应,起催化作用的是滤料表面的铁质活性滤膜。铁质活性滤膜首先吸附水中的亚铁离子,被吸附的亚铁离子在活性滤膜的催化作用下迅速氧化为三价铁,并且使催化剂再生,反应生成物为催化剂,又参与新的催化反应,铁质活性滤膜接触氧化铁的过程是一个自催化反应过程。其反应式如下:

  铁质活性滤膜的化学组成为Fe(OH)3·2H2O。新鲜的滤膜具有很强的催化活性,随着时间的增长,滤膜老化脱水活性也逐渐降低,滤膜最终老化生成FeOOH便丧失催化活性。在除铁滤池中自然形成的羟基化铁(FeOOH)的羟基表面起接触催化作用。羟基氧化铁不是以FeOOH所示的简单分子形式存在的,它是铁原子、氧原子和固体内氢原子三者相结合的巨大无机分子。

  锰常见的化合价有十2,+4,+6,+7四种价位,其中十6价和十7价锰在天然水中一般不稳定,实际中可以认为不存在。+2价锰溶于水是要去除的主要对象,十4价锰则常以固体物质MnO2及水合物的悬浮粒子形式存在于水中,其溶解度甚低,不足为害。锰比铁去除难得多,Fe2+在 pH>7.0的情况下就能够迅速氧化为Fe3+,而水中二价锰则需在PH>9.5时,才能比较迅速地氧化为MnO2析出。地下水的PH值一般在7.5以下,必须加以适宜条件,反应才能进行。

  接触氧化除锰工艺流程比较简单,原水经简单曝气之后进入除锰滤池,在滤料表面的锰质活性滤膜的作用下,Mn2十被水中的溶解氧氧化为MnO2,并吸附在滤料表面,使滤膜得到更新,该过程也是自催化反应。

  关于锰质活性滤膜的组成有几种不同的观点,接触催化物为MnO2,其反应式为:

  接触氧化除锰与接触氧化除铁的工艺非常类似,都是简单曝气后直接过滤,水力停留时间短。但由于铁锰性质略有不同,因而影响因素也有所不同。前已述及,铁的氧化还原电位比锰低,二价锰较难被氧化成四价锰,所以其滤速比除铁滤速低,一般为8~10 m/h。而且二价铁对四价锰成为还原剂,大大阻碍二价锰的氧化:

  锰的去除远较铁为困难,铁锰共存时,铁对锰的去除有干扰。在滤层中,要先完成对铁的去除,才能开始除锰,由于锰的电位比铁要高的多,因此锰比铁需要的能量要高很多,要获得稳定的除锰效果,Fe2+的界限质量浓度约为2 mg/L,才会有很好的效果。

  无论是接触氧化还是生物去除均需要6.0以上的PH值和对铁的处理效果的支持,才能完成。

  由于滤料的膨胀率的影响,滤料的粒径的大小决定了滤池的反冲效果和过滤效果,因此滤料的选择应以50%为宜,例如一号料为18-26mm,二号则应为10-14mm,三号为6-8mm,四号为2-4mm,五号为1-2mm,这样的级配对于滤料的反冲及滤速均有很好的益处。确定滤料粒径应考虑待滤水性质、预期达到的滤后水水质标准、滤池类型、可利用的水头损失等因素。粒径与滤池运行参数的关系见表1。

  粒径粒层深滤速水头损失滤后水质 ↓ ↑ ↓ = 滤池运行周期 ↑ ↑ ↓ ↑ 复合/m2= ↑ = ↑

  主要原因包括:(1)滤床内积聚了气体;(2)表面反冲洗持续时间过长(>

  5min);(3)反冲洗强度太高,尤其是在低水温季节;(4)粒径不匹配;(5)锰砂离V形槽太近(锰砂大多已经形成锈砂);(6)气、水反冲洗程序安排不当;(7)池底集水系统漏砂等。

  一般认为,在原深度基础上变薄20%或总深度降低15cm的流失是可接受的水平,而对表面冲洗系统,当滤床表面下降超过15cm后,表面冲洗的优势丧失。此外,滤层度变薄20%后,滤池的截污能力开始下降。

  快滤池的补砂操作很简单,将与原粒径相同但不均匀系数略低,滤料铺加到滤床表面。对不均匀系数的要求高些,主要是控制细砂阻滤而缩短滤池运行周期。补充用滤料必须与原滤料的物理特性匹配,从而保证各层滤料在反冲洗过程中均衡膨胀。

  运行滤池一定要严格按照操作规程进行,严格控制清水,反冲两门的开度,并及时向负责人报告滤池的不正常现象,做好滤池的大修工作。

  普通双阀快滤池大修后需作好投产前的准备工作。检查所有管道和闸阀是否完好,各管口标高是否符合设计要求,特别是排水槽上缘是否水平。对滤料最好是在放入前进行严格的检查,确保其粒径和级配与设计相符,初次铺设的滤料应比设计厚度增加5-10cm左右。清除滤池内的杂物,保持滤料平整,然后按“操作运行”的“过滤操作”要求放水检查,排除滤料内的空气。待放水检查结束后,对滤料进行连续冲洗,直至清洁为止,冲洗方法按“操作运行”的冲洗操作进行。

  徐徐开启进水阀,当水位升到排水槽上缘时,徐徐开启出水阀,过滤开始。开始开启出水阀门时要注意出水水质,待达到设计指标时方可全部开启。对过滤过程的时间、出水水质、水头损失等主要运行参数应作好原始记录。

  滤池是净水设备中最主要的设备之一,其保养和检修制度分为:一级保养、二级保养和大修理。 一级保养为日常保养,每天要进行一次,由操作值班人员负责;二级保养为定期检修,一般每半年或每年进行一次,由操作值班人员配合检修人员进行;大修理为设务恢复性修理,包括滤池的翻砂和阀门的解体大修或更换,由厂部安排检修人员进行。

  护 (1)滤池放空检查,检查过滤及反冲洗后滤层表面是否平坦,裂缝出现多少,以及滤层四周有无脱离池壁现象,测定承托是否移动

  (3)清洗表面滤料或更换调整表面滤料、滤层中如发现有机物含量大可采用液氯、漂白粉处理,严重可用盐酸或硫酸处理处理前首先对滤料进行最大强度冲洗,然后在滤料表面保持10-15cm 水深,并以每平方米滤池面积加入1—5kg工业硫酸盐酸均匀地散布在滤池滤层上,在倾倒盐酸及硫酸时要特别注意安全,要佩戴胶皮手套、胶皮靴子和防毒面具。倾倒后每3h对滤料进行翻动一次,连续翻动4次,再静置6-8h后进行彻底冲洗 大

  (5)滤后水浊度经多方检查、改进,仍长期达不到30摄氏度,细菌和大肠菌值甚至比沉淀水还高

  (5)检修所有控制阀门和附属设备,有损坏和不能正常使用的都需进行修理或更换

  (1)配水系统重新安装后进行一次反冲洗以检查接头紧密状态及孔口、喷嘴的均匀性

  (3)滤料全部铺设后再进行整体验收,每次验收都要由负责操作的人员和主要技术人员与修理人员共同参加

  滤料反冲洗后,滤层中截留物质大部分被冲洗掉,这时,滤层孔隙率最大,水头损失阻抗系数最小。滤池开始过滤生产时,由于水在滤层中水头损失小,滤池内水位迅速下降,最后整个滤料表面裸露,在滤料层中进入空气并出现动水位。待滤水从洗水槽进入滤池直接跌落到滤料表面,携带空气进入滤层过滤(见图1)。滤层内水头损失过大,有的滤层内出现负压现象,溶于水中的气体从水中析出形成气塞。

  随着工作时间延长,滤层中水头损失不断增大,水位不断上升逐渐浮出水面。这种现象出现,对滤池正常工作和出水水质会带来很大影响,对其危害产生的原因和解决措施,本文做以阐述。

  由于滤料层裸露,在滤料层中的水位以上部分充满了空气,待滤水从洗水槽跌入滤层中时又携带空气进入滤层。

  过滤生产一段时间后,滤池的液面将淹没滤料并不断上升。在浮力作用下,滤层中空气欲上浮,过滤水在滤层中向下流动,阻碍空气上浮,最后,滤层中空气在向下运动水流的作用下形成气泡附着在滤料颗粒下方,对水流产生额外阻力。

  i0——滤池开始工作而且无气泡时水在滤层中的初期水力坡降,该值取决于滤料粒径、滤速等因素。

  由于大量气泡存在,孔隙率减少的数量△m大幅度增加,从而使水在滤层中的水头损失迅速增加,滤池工作周期大幅度减小,见图2。

  当滤料层裸露时,滤层中出现动水位,实际过滤层厚度下降影响滤过水水质。待滤水从洗水槽跌入裸露的滤层中,待滤水在滤层平面上颁布不均匀,出现若干流量集中区,局部滤速过大,对水质带来影响。洗水槽上跌落的待滤水冲刷滤料,有时把滤层中截面的物质冲刷下来造成二次污染,甚至出现滤后水质指标大于待滤水现象。

  过滤工作结束后,关闭滤过水门停止过滤,这时,滤层中有大量空气释放出来,形成气泡浮出水面,但是滤层中仍有相当数量的空气。反冲洗时滤料片悬浮状态,滤料颗粒上附着的气泡使其综合比重大幅度下降,由于气泡的浮力作用,有部分滤料颗粒被反冲洗水流带走,通过洗水槽排到下水道中,造成滤料流失,出现这种现象的水厂需要经常向滤池中补充滤料,造成浪费。

  控制滤池内水位,不但要使滤层不裸露,而且要使待滤水通过洗水槽进入滤池时不要产生过大的跌水,滤层内不产生真空。反冲洗后滤池投入生产时,控制滤过水门的开启程度,使滤池内水位在洗水槽上沿H3附近(见图3)。随着工作时间延长,水头损失沿曲线②变化。工作时间达到t1时间,再增加滤过水门开启程度,水头损失沿曲线③变化。工作时间达到t2时间,将滤过水门全部开启,水头损失延曲线④变化,曲线④变化,曲线④与曲线①重合,当水头损失达到工作水头H2,工作时间达到T1时,滤池开始反冲洗。上述操作过程可杜绝空气进入滤层。

  对于自动控制滤池、采用可控制开启程序的滤过水门,通过滤池工作时间控制滤过水门开启程序,保证滤池最低工作水位。2、滤池安设液位计,根据滤池液位控制滤过水门开启程度。3、V型滤池是通过液位计控制滤过水门开启程度,使滤池在恒水位下工作。对于手动操作滤池,可根据滤池工作时间,手动控制滤过水门的开启程度。

  因管道排气不畅而造成的气囊运动随之而来的压力振荡效应,轻则占据管道通水断面造成通水困难,增大水阻,增加电耗,加剧破坏作用,重者使管道破裂,供水中断。因此充分认识气囊的危害是保证供水畅通的关键之一。

  管道中的进入气体的状况很多,对于滤池来说,主要是频繁的开井和减井,导致滤池水位波动所致,而滤池后的管路因中间泵房的原因,无排气阀,导致滤池与中间泵房的矛盾加剧,影响滤池的滤速。

  解决滤池的气囊不仅需要对滤池的门和操作制度进行控制,更重要的是严格控制开停井的次数和中间泵房的变频的额度,使水位保持于V形槽上沿0.1-0.3米,使空气很难进入滤层,进而从根本上杜绝气囊的危害。

  由于变频调速给水系统不需要建造传统给水系统的高位水箱、水塔,避免了二次污染并减少了土建投资,而且设计得合理能达到较好的节能效果。?

  在给水系统中,定速泵只有在其高效段运行才能保证系统正常工作且没有能量浪费。在设计中,一般以管网的最不利情况(此时流量最大,所需扬程也最大)作为选择水泵机组的主要依据,但当管网流量减小时,能量的浪费不可避免,而且还可能造成低流量时管道内超压问题 。水泵根据系统流量实时变化实现无级调速运行,是较好地解决以上问题,达到节能目的的途径之一。

  水泵调速可以通过很多途径实现,其中变频调速是目前较理想的一种。变频调速是通过给水系统管网上的压力传感器对管网的水压进行采样,将压力信号转换为电信号,并将其送至PID调节器与用户设置的压力值进行比较和运算,将结果转换为频率调节信号送至变频器。变频器根 据传送过来的频率调节信号调整水泵电机的电源频率,从而实现调整水泵的转速。

  变频调速给水系统根据水泵出口压力的变化情况可分为两种:变压变量给水系统和恒压变量 给水系统。

  变压变量给水系统的压力传感器设置在给水管网末端,PID调节器设定值为管网末端用户所需的服务水头值。系统通过自动调节使管网末端水压保持恒定,使管路特性曲线和系统静扬 程不变,而水泵出水口压力则随着供水量变化依管路特性曲线而改变,故理论上实现了“系统需要多少,机组提供多少”,不会由于供水量的减小而产生多余的静扬程,节能效果满意。但这只是一种理想情况,且系统中仅有变频泵在单独工作。由于变频设备比较昂贵,大型给水系统往往采用变频泵与定速泵并联运行的方式供水。现以系统中设置一台变频泵和一台工频泵并联运行为例。当管网流量减小时,需要扬程相应降低,变频泵可以通过减速运行实现。但为保证并联机组正常工作,工频泵扬程也必须相应降低,这只能通过增加流量实现,从而造成水量的漏失,且还可能导致工频泵离开高效段工作,即没有达到真正节能的目的。遇有以上情况,可以采取以下措施来改善其节能效果:

  ①对于小规模的给水系统,可以仅设一台变频泵,并使泵的高效区(其高效范围比工频泵运行时的范围要大)尽可能多地包括出现几率较大的工况点。

  ②采用多台泵调速运行,当然,由于变频调速装置价格比较昂贵,应综合考虑其经济因素而定。

  ③选择工频泵时,应使系统在最不利点工作时,工频泵的工况点尽量靠近其高效区左侧;如果最不利情况出现几率较小,可以使其稍偏离高效区,落在高效区左外侧。这样,当系统扬程降低时,工频泵仍可在高效区工作。

  恒压变量给水系统将压力传感器设在水泵机组出水口,旨在使水泵出水口压力保持恒定,一般设定为最不利工况时水泵出水口所需压力值。仍以一台变频泵与一台工频泵并联运行为例。当管网流量减小时,变频泵通过减速运行,保持扬程不变而减小出水量。由于出口压力不变,工频泵出水量不会改变(即运行工况不变),仍在高效区工作,从而达到节能目的。需要指出的是,当系统所需流量变小时,水泵出水口压力(仍为最不利情况下系统所需压力)大于 管路此时需要的压力,从而仍会在一定程度上导致静扬程的浪费。以下两种措施可以改善其节能效果:①适当放大管网的管径,使管路特性曲线更趋平缓,但这会增加管网的一次性投资,需要和节能效果作综合经济比较。?

  给水系统在用水低谷时(如夜间),系统内用水量很小,甚至达到零流量,称为“微流量”。在这种情况下,若依靠在高效区大流量范围运行的水泵来维持系统压力,不仅折损水泵寿命,而且效率低,不能达到节能的目的。理论上,变频泵的流量在高效范围可以接近于零,但实际上水泵转速不可能无限制地减小,仅靠变频泵往往还难以胜任微流量工况。实际工程一般采用在系统中增设小流量工频辅泵、小流量变频辅泵、气压罐等设施来维持微流量时的系统压力。对不同系统的微流量问题应具体情况具体分析,并对一次性投资与长期运行费用 进行综合考虑才能作出合理的解决方案。表2列出了微流量运行的几种节能措施并进行了比较。

  微流量时维持工作的设备 优点 缺点 适用系统 工频辅泵 投资少,控制简单 辅泵启动频繁 系统规模大,微流量时流量波动小 工频辅泵+气压罐 避免辅泵启动频繁 投资多,占地大 系统规模大,微流量时流量波动大 变频辅泵+气压罐 避免辅泵启动频繁 投资多,占地大 系统规模小,主泵功率小 变频主泵 节省投资 系统规模小 系统规模小,微流量时流量波动小 变频辅泵 节能效果佳 控制程序复杂 较少采用

  在变频调速给水系统的设计过程中,应根据给水管网的特点合理选泵,以达到在满足使用要求的前提下,既节省投资又节能的目的。同时,合理的运用变频调速泵更加对滤池有很大的益处,可以充分的发挥滤池的最大性能和提升滤池的最大周期,从而节约反冲洗水量,节约资金。

  做好废水回收的工作是杜绝废水对跌水曝气的二次污染,是使混凝药剂得以充分的利用的最有效的措施,聚合氯化铝是我厂长期以来一直应用的药剂,效果非常好,适合高浊度水的沉淀工作。

  无机高分子混凝剂是从正盐水解为氢氧化物过程中形成的中间产物,对铝的水解聚合形态的分析方法主要有化学分析法和电位滴定法,近年兴起的27AlNMR法和Al-Ferron逐时络合比色法为铝水解聚合形态的研究提供了较好的手段,并成为国内外混凝剂基础研究的热点。研究认为,无机高分子混凝剂聚氯化铝只存在单体、二聚体和Al

  13[Al12AlO4(OH)247+]及其高聚体的形态,其中Al13是最佳的凝聚—絮凝成分,其含量可反映产品的有效性[1~3]。4.1.1 不同盐基度聚氯化铝的水解聚合形态

  2、3]中报道的盐基度越高则Alb含量越高的分布规律呈现明显的差异。引起Alb分布差异的原因在于所研究样品的生产或制作条件不同,国内样品均为铝酸钙调整法生产,铝的水解聚合是在高铝浓度(>2mol/L)、高温(>100℃)、短时间(<4h=条件下进行,有利于高盐基度、高聚合度的Alc形态的生成,而文献[2、3]中研究的样品是采用慢速滴碱法在实验室制作,铝的水解是在低铝浓度(0.1mol/L)、室温、长时间滴定的条件下进行,有利于Alb形态的生成。4.1.2 铝水解聚合形态与混凝效果

  由混凝沉淀试验得出的净化水剩余浊度与盐基度的关系见图3。净化水剩余浊度的高低可反映出混凝效果的优劣。从图3、表3可看出,剩余浊度随盐基度、Alc含量的升高和Ala含量的降低而降低,四者之间呈较好的相关性。

  Alb与混凝效果的关系为:在盐基度为0%~45%区间内则剩余浊度随Alb含量的升高而降低,在盐基度为45%~94.5%区间内则剩余浊度随Alb含量的降低而降低。这与文献

  1]中报道的Alb含量越高则混凝效果越佳的结论呈现出明显的差异。综上所述,盐基度、Alc、Ala均可作为衡量混凝效果的特征指标,但是与盐基度指标相比,由于Alc、Ala的分析时间较长、数据重现性较差,故作为定量分析指标尚有待于继续完善。4.

  由于国内聚氯化铝产品中以铝酸钙作为主要原料,因而产品普遍含有氯化钙成分。含钙聚氯化铝和纯聚氯化铝的铝形态及混凝效果的比较见表3。可见在相同盐基度下,含钙聚氯化铝与纯聚氯化铝的水解聚合形态组成相似,但含钙聚氯化铝的Alc含量稍高、Ala和Alb含量稍低、混凝效果相近或稍好。

  ①聚氯化铝水解聚合形态组成中的Alb值随盐基度的变化呈正态曲线%区间的Alb值为上升段,盐基度为45%~94.5%区间内Alb值为下降段。这不同于国内外文献报道的盐基度越高则Alb值越高的结论。②Alb(≈Al

  )不是聚氯化铝中的最佳组分,不能将高Alb(Al13)作为聚氯化铝生产工艺追求的目标。在盐基度为0%~45%区间内,Alb含量越高则混凝效果越好,但在45%~94.5%区间内Alb含量越高则混凝效果越差。③聚氯化铝水解聚合形态中,除Alb外,Alc和Ala含量与混凝效果均呈较好的相关性,能间接反映聚氯化铝的混凝性能。Ala、Alc与盐基度也有良好的相关性,但因该指标分析时间长、重现性差,尚不能取代盐基度作为分析指标。④盐基度是聚氯化铝性能和形态的重要指标之一,提高盐基度不但可提高混凝效果,还可以降低生产和使用成本。提高盐基度或Alc值是提高聚氯化铝混凝性能的重要途径。

  ⑤铝酸钙调整法生产的聚氯化铝产品具有盐基度高、Alc含量高、Ala含量低、成本低及混凝效果好等优点,与以氢氧化铝为原料采用压溶法生产的国外聚氯化铝产品比较,具有显著的技术经济优势。

  沉淀池运行管理的基本要求是保证各项设备安全完好,及时调控各项运行控制参数,保证出水水质达到规定的指标。为此,应着重作好以下几方面工作。

  进入沉淀池的水流,在池中停留的时间通常并不相同,一部分水的停留时间小于设计停留时间,很快流出池外;另一部分则停留时间大于设计停留时间,这种停留时间不相同的现象叫短硫。

  短流使一部分水的停留时间缩短,得不到充分沉淀,降低了沉淀效率;另一部分水的停留时间可能很长,甚至出现水流基本停滞不动的死水区,减少了沉淀池的有效容积。总之短流是影响沉淀池出水水质的主要原因之一。形成短流现象的原因很多,如进入沉淀池的流速过高;出水堰的单位堰长流量过大;沉淀池进水区和出水区距离过近;沉淀池水面受大风影响;池水受到阳光照射引起水温的变化;进入和池内水的密度差;以及沉淀池内存在的柱子、导流壁和刮泥设施等,均可形成短流形象。

  为避免短流,一是在设计中尽量采取一些措施(如采用适宜的进水分配装置,以消除进口射流,使水流均匀分布在沉淀池的过水断面上,降低紊流并防止污泥区附近的流速过大,采用指形出水槽以延长出流堰的长度;沉淀池加盖或设置隔墙,以降低池水受风力和光照升温的影响;高浓度水经过预沉,以减少进水悬浮固体浓度高产生的异重流等);二是加强运行管理,在沉淀池投产前应严格检查出水堰是否平直,发现问题,要及时修理。在运行中,浮渣可能堵塞部分溢流堰口,致使整个出流堰的单位长度溢流量不等而产生水流抽吸,操作人员应及时清理堰口上的浮渣;用塑料加工的锯齿形三角堰因时间关系,可能发生变形,管理人员应及时维修或更换,以保证出流均匀,减少短流。通过采取上述措施,可使沉淀池的短流现象降低到最小限度。

  当沉淀池用于混凝工艺的液固分离时,正确投加混凝剂是沉淀池运行管理的关键之一。要做到正确投加混凝剂,必须掌握进水质和水量的变化。以饮用水净化为例,一般要求2-4小时测定一次原水的浊度、pH值、水温、碱度。在水质频繁季节,要求1-2小时进行一次测定,以了解进水泵房开停状况,根据水质水量的变化及时调整投药量。特别要防止断药事故的发生,因为即使短时期停止加药了也会导致出水水质的恶化。

  及时排泥是沉淀池运行管理中极为重要的工作。污水处理中的沉淀池中所含污泥量较多,有绝大部分为有机物,如不及时排泥,就会产生厌氧发酵,致使污泥上浮,不仅破坏了沉淀池的正常工作,而且使出水质恶化,如出水中溶解性BOD值上升;pH值下降等。

  初次沉淀的池排泥周期一般不宜超过2日,二次沉淀池排泥周期一般不宜超过2小时,当排泥不彻底时应停池(放空)采用人工冲洗的方法清泥。机械排泥的沉淀池要加强排泥设备的维护管理,一旦机械排泥设备发生故障,应及时修理,以避免池底积泥过度,影响出水水质。

  在给水处理中的沉淀池,当原水藻类含量较高时,会导致藻类在池中滋生,尤其是在气温较高的地区,沉淀池中加装斜管时,这种现象可能更为突出。藻类滋生虽不会严重影响沉淀池的运转,但对出水的水质不利。防止措施是:在原水中加氯,以抑止藻类生长。采用三氯化铁混凝剂亦对藻类有抑制作用。对于已经在斜板和斜管上生长的藻类,可用高压力水冲洗,往往一经冲洗即可去除附着的藻类。

  活性污泥处理系统的二次沉淀池是该系统的重要组成部分。二次沉淀池的运转是否正常,直接关系到处理系统的出水水质和回流污泥的浓度,对整个系统的净化效果产生重大影响。二次沉淀池运行管理较为复杂,其运行过程中常见问题及防止措施参见“活性污泥法处理系统的运行管理”。

  供水管理就以系统为基础,既要认识到城市用水系统各要素之间的复杂关系,又要对这种联系及其相应的利益,进行管理控制的一种全新的模式,把多种管理方法和手段集成起来,从技术,运作,系统控制这三个最基本的方面入手,管理好城市水资源和城市用水。